Регрессия многомерная

В экономических и технологических исследованиях при фиксированном значении регрессора X часто рассматривается многомерный отклик Y = Чг/ (X)Q + е, где Y — (/X 1) -вектор наблюдений при значении регрессора X, Чг — известная (/ X р)-матричная функция X, в — (рх 1)-вектор неизвестных параметров, а е — (/X 1)-вектор ошибок N (О, V), где V — неизвестная положительно определенная (/ X /)-матрица. Оценка вектора в многомерной регрессии проводится одновременно с оценкой матрицы V путем итеративного решения нелинейной системы уравнений. Разработаны устойчивые методы оценки многомерной регрессии. Многомерная регрессия может использоваться при описании многомерных распределений.  [c.250]


Установление профилей сегментов. Для этого используются многомерные статистические методы. В основном это дискриминантный анализ, множественная регрессия, многомерный факторный анализ.  [c.88]

Для изучения одномерных статистических совокупностей используются вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный и факторный анализ.  [c.268]

Среди мер по устранению или уменьшению мультиколлинеарности отметим следующие 1) построение уравнений регрессии по отклонениям от тренда или конечным разностям 2) преобразование множества независимых переменных в несколько ортогональных множеств при помощи методов многомерного статистического анализа (факторного анализа или метода главных компонент) 3) исключение из рассмотрения одного или нескольких линейно связанных аргументов.  [c.71]


Для изучения одномерных статистических совокупностей используются вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа, изучаемые в курсах теории статистики.  [c.96]

Излагаются статистические методы группировки, выборочный, индексный, корреляционный, анализ динамики. Показаны их взаимосвязи и возможности применения с использованием ПЭВМ в рыночной экономике в сборе информации в связи с увеличением числа хозяйственных единиц и их типов, аудите, финансовом менеджменте, прогнозировании. Четвертое издание (3-е изд. — 1997 г.) полностью переработано, расширено изложение методов многомерной классификации данных, подробнее рассмотрены применение выборочного метода, методы совмещения индексов и регрессий введен анализ соотношения индексов экономических показателей. Включена глава, посвященная статистическому изучению структуры данных и ее изменений.  [c.2]

В 4-м издании учебника полностью переработана глава 3 внесены дополнения в главы 2, 4, 5, 8, 9 расширено изложение методов многомерной классификации данных ( глава 6) подробнее рассмотрены вопросы применения выборочного метода (глава 7) изложены методы совмещения индексов и регрессий введен анализ соотношения индексов экономических показателей (глава 10) заново написана глава 11, посвященная статистическому изучению структуры данных и ее изменений.  [c.4]

Проблема отбора факторных признаков для построения моделей взаимосвязи может быть решена с помощью эвристических или многомерных статистических методов анализа. Наиболее приемлемым методом отбора факторных признаков является шаговая регрессия (шаговый регрессионный анализ). Сущность данного метода заключается в последовательном включении факторов в уравнение регрессии и последующей проверке их значимости. Факторы поочередно вводятся в уравнение так называемым прямым методом . При проверке значимости введенного фактора определяется, насколько уменьшается сумма квадратов остатков и увеличивается величина множественного коэффициента корреляции (R). Одновременно используется и обратный метод, т.е. исключение факторов, ставших незначимыми на основе -крите-рия Стьюдента. Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существен и его включение в уравнение регрессии необходимо.  [c.118]


В практике экономических исследований имеющиеся данные не всегда можно считать выборкой из многомерной нормальной совокупности, когда одна из рассматриваемых переменных не является случайной или когда линия регрессии явно не прямая и т. п. В этих случаях пытаются определить кривую (поверхность), которая дает наилучшее (в смысле метода наименьших квадратов) приближение к исходным данным. Соответствующие методы приближения получили название регрессионного анализа.  [c.50]

Анализ на основе множественной регрессии основан на использовании более чем одной независимой переменной в уравнении регрессии. Это усложняет анализ, делая его многомерным. Однако регрессионная модель более полно отражает действительность, так как в реальности исследуемый параметр, как правило, зависит от множества факторов.  [c.204]

Чаще всего для прогнозов применяются многофакторные математические модели на основе корреляционно-регрессионного анализа-исследования взаимозависимости признаков в генеральной совокупности, являющихся случайными величинами, имеющими нормальное многомерное распределение, и статистических выводов относительно полученных уравнений и коэффициентов регрессии.  [c.146]

Мощные компьютерные системы позволяют развить нынешнюю тенденцию к созданию сложных моделей с многими параметрами, основанными на многомерной регрессии обширных баз данных. Их внушительный математический внешний вид  [c.323]

Принципы, предложенные в [260], применимы не только для одномерной процедуры рекуррентного вычисления корня функции регрессии, но и для многомерных процессов. Аналогичные построения могут быть использованы и для отыскания экстремума функции регрессии.  [c.368]

В [212, 295] приведены условия сходимости процесса (8.1) к корню уравнения регрессии, легко обобщаемые на многомерный случай.  [c.377]

В многомерном случае решалась также задача стохастической аппроксимации неподвижной точки функции регрессии f(x), т. е. решения уравнения f(x) =x.  [c.377]

Таким образом, если анализируемый многомерный признак, (2),. .., Н(р) л) подчинен (р+1)-мерному нормальному закону, то функция регрессии результирующего показателя ц по объясняющим переменным Е(1>, Е<2>,. .., ( > имеет линейный (по X) вид, а ее коэффициенты выражаются в терминах первых двух моментов анализируемых случайных величин.  [c.167]

В предыдущей главе (см. п. 5.1) уже упоминалось, что если анализируемые переменные ( (1), (2),. .., (/7) т]) подчиняются (р + 1)-мерному нормальному закону распределения, то истинная функция / (X) регрессии т] по (1),..., (/7) принадлежит классу линейных (по x(k k = 1,2,..., р) функций (6.4). Однако статистическая проверка многомерной нормальности изучаемой векторной случайной величины относится к задачам, до сих пор плохо оснащенным достаточно эффективным инструментарием для их решения (см. сноску к с. 152 [14]). К тому же возможны ситуации, когда анализируемый многомерный признак (Ц1),..., < >> т]) не является нормальным, но в то же время регрессия г по ( (1),..., (р)) линейна.  [c.180]

Рассмотрим теперь задачу нормальной многомерной линейной регрессии, когда р предиктор ных переменных, образующих  [c.224]

Если в основу подбора параметров многомерной регрессии при описании распределения Х(2> положить требование совпадения не обычных, а взвешенных моментов условного распределения Х<2> при известном значении Х 1 то при соответствующем выборе весовой функции можно прийти к использованию эв-регрессии.  [c.234]

Использование традиционных регрессионных моделей (линейных при многомерном X и параболических в одномерном случае) в применении к относительно большим подобластям изменения регрессора позволяет сочетать простоту расчетов, свойственную классическим моделям регрессии, с эффективным использованием выборочной информации. Эти методы получили название локально параметрических.  [c.335]

Связь с проблемой статистического исследования смесей многомерных распределений. Посмотрим на модель регрессии результирующего показателя г по объясняющим переменным х(1), л (2>,. .., х(р) как на одну из характеристик их закона распределения, например, функции плотности  [c.395]

Д у к а р с к и и О. М., Л е в и т Б. Я. Некоторые применения непараметрических оценок регрессии. — В кн. Многомерный статистический анализ в социально-экономических исследованиях. М., 1974, с. 31—37.  [c.461]

Интерпретация параметров интенсивности влияния факторов fli в многомерных регрессионных моделях определяется наличием и теснотой внутренних связей системы факторных показателей. Хотя наиболее распространенный метод оценки коэффициентов регрессииметод наименьших квадратов — предполагает статистическую независимость факторных показателей, в практических попытках моделирования хозяйственной деятельности данное требование трудно выполнять и поэтому в общем случае им пренебрегают. Изучаются лишь пути устранения явных искажений, когда направление влияния фактора в модели прямо противоречит сущности моделируемого явления или теоретическим представлениям о сущности моделируемой связи. Такое положение создается из-за наличия тесной связи между факторами (какой-нибудь фактор выражается линейной комбинацией других факторов, включенных в мо-  [c.120]

Построение линейных моделей. Осуществляется с использованием многомерной пошаговой регрессии и линейного варианта полиномиального алгоритма МГУА. Из полученных моделей была выбрана лучшая модель  [c.322]

Формулы для расчета средних ошибок оценки положения гиперплоскости регрессии в заданной многомерной точке и для индивидуальной величины результативного признака весьма сложны, требуют применения матричной алгебры и здесь не рассматриваются. Средняя ошибка оценки значения результативного признака, рассчитанная по программе ПЭВМ Mi rostat и приведенная в табл. 8.8, равна 79,2 руб. на 1 га. Это лишь среднее квадратическое отклонение фактических значений дохода от расчетных по уравнению, не учитывающее ошибки положения самой гиперплоскости регрессии при экстраполяции значений факторных признаков. Поэтому ограничимся точечными прогнозами в нескольких вариантах (табл. 8.14).  [c.289]

В учебнике излагаются основы эконометрики. Большое внимание уделяется классической (парной и множественной) и обобщенной моделям линейной регрессии, классическому и обобщенному методам наименьших квадратов, анализу временных рядов и систем одновременных уравнений. Обсуждаются различные аспекты многомерной регрессии мультиколлине-арность, фиктивные переменные, спецификация и линеаризация модели, частная корреляция. Учебный материал сопровождается достаточным числом решенных задач и задач для самостоятельной работы.  [c.2]

Более тщательный и систематический анализ многомерных корреляций и множественных регрессий этого множества факторов не показывает ясной причины, вызывающей крах [30]. Наиболее четкое утверждение, хотя в чем-то и самоповторяющееся, заключается в том, что наиболее статистически значимая переменная в октябрьском крушении может быть приписана нормальной реакции рынка акций каждой страны на движение мирового рынка. Таким образом, был сконструирован индекс мирового рынка [30], путем равного взвешивания местных индексов упомянутых ранее 23 основных индустриальных стран и нормировании его на уровне 100 в день 30 сентября. Он упал до 73,6 к 30 октября. Важным результатом было обнаружение статистических соотношений между ним и месячным доходом каждой страны в период с 1981 года до месяца, предшествующего краху, хотя и со значимыми разбросами величины этого соответствия от страны к стране [30]. Такая корреляция снимает влияние институциональных характеристик рынка, что сигнализирует о возможном существовании тонкой, но, тем не менее, значимой в мировом масштабе, кооперативности во времени, предшествующем краху.  [c.22]

Следует также проверить, скоррелированны ли действия скрытых элементов. В многомерном регрессионном анализе при росте муль-тиколлинеарности значения коэффициентов регрессии становятся все менее надежными. Так же и здесь предпочтительно, чтобы выходы скрытых элементов одного слоя были некоррелированны. Нужно найти собственные значения корреляционной матрицы для выходов скрытых узлов по данным обработки всех обучающих примеров. При полной некоррелированности все собственные значения будут равны единице, а отличия от единицы говорят об избыточном числе скрытых элементов. Кроме того, для анализа внутреннего представления нейронно-сетевой модели часто применяются методы кластерного анализа (см. [ 127]).  [c.64]

По сравнению с 13-2-1 сетью значения MSE и на обучающем, и на проверочном множествах получаются чуть-чуть лучше. Перед тем, как делать выводы собственно о структуре сети, разумно сравнить ее результаты с такими классическими методами, как многомерная регрессия или модель ARIMA (собственной разработки MoF).  [c.102]

Т. Блум [31], Ж. Сакс [244] и другие обобщили схемы стохастической аппроксимации на многомерный случай. Кратко опишем не только многомерный аналог процедуры Кифера — Вольфовица оптимизации одноэкстремальной функции регрессии, но и многомерный аналог схемы Роббинса — Монро. Оба эти процесса могут быть использованы для построения итеративных методов решения задач стохастического программирования (см. 7).  [c.351]

В [212] построен непрерывный многомерный аналог процедуры стохастической аппроксимации Кифера — Вольфовица для вычисления экстремума функции регрессии. При этом предполагается, что ошибка наблюдения в момент времени t скалярной функции f(x) равна гауссовского белого шума. Непрерывный аналог процедуры Кифера — Вольфовица интерпретируется в виде системы стохастических дифференциальных уравнений Ито. В [212] формулируются условия, при которых гарантируется сходимость процесса почти наверное к экстремуму f(x). Для одномерного случая эти условия упрощаются и устанавливаются следующим утверждением  [c.380]

В [211] приведены условия, при которых многомерный непрерывный аналог процедуры Кифера — Вольфовица вычисления максимума f(x). сходится с вероятностью единица к одному из локальных максимумов многоэкстремальной функции регрессии f(x).  [c.380]

Разделы многомерного статистического анализа, составляющие математический аппарат статистического исследования зависимостей, формировались и развивались с учетом специфики анализируемых моделей, обусловленной в первую очередь природой исследуемых переменных. Так, изучение зависимостей между количественными переменными обслуживается регрессионным и корреляционным анализами и анализом временных рядов (гл. 1 —12, 14), изучение зависимостей количественного результирующего показателя от неколичественных или разнотипных объясняющих переменных — дисперсионным и ковариационным анализами, моделями типологической регрессии (гл. 13) для исследования зависимостей в условиях активного эксперимента служит теория оптимального планирования экспериментов [2, 3, 136] наконец, для исследования системы зависимостей, в которых одни и те же  [c.54]

Вернемся теперь к соотношению (1.5), связывающему между собой общую вариацию результирующего показателя (о — DTJ), вариацию функции регрессии (of — D/ ( )) и усредненную (по различным возможным значениям X объясняющих переменных) величину условной дисперсии регрессионных остатков (а (х> = E D [r) = X]). Оно остается справедливым и в случае многомерной предикторной переменной - ( (1), (2),. ... (р)) (или X - (х 1), х<2>,. ... " )).  [c.88]

Множественный (совокупный) коэффициент корреляции измеряет степень тесноты статистической связи (любой формы) между некоторым (результирующим) показателем, с одной стороны, и совокупностью других (объясняющих) переменных — с другой. Формально он определен для любой многомерной системы наблюдений. Квадрат его величины (называемый коэффициентом детерминации) показывает, какая доля дисперсии исследуемого результирующего показателя определяется (детерминируется) совокупным влиянием контролируемых нами (в виде функции регрессии) объясняющих переменных. Оставшаяся необъясненной доля дисперсии результирующего показателя определяет ту верхнюю границу точности, которой мы можем добиться при восстановлении (прогнозировании, аппроксимации) значения результирующего показателя по заданным значениям объясняющих переменных.  [c.98]

Эв-оценки. Введённое в п. 7.2.4 понятие экспоненциально-взвешенной регрессий (А,- регрессии) допускает естественное обобщение ни случай многомерной регрессии. При этом сохраняется геометрическая интерпретация эв-регрессии с бчевид-ным перенесением на многомерный отлик определений 7. 1 — 7.4. Приведем только основные расчетные формулы, взяв за основу итерационный процесс, описанный в предыдущем пункте, и модифицировав его согласно (7.39), (7.40)  [c.233]

Использование многомерной регрессии для параметризации многомерных распределений. Плотность р (X) распределения р-мерного случайного вектора X = (Х< > Х<2>) = =(х >,. .., , ,. ..,Я(Р>) всегда может быть представлена в видз р (X) = Р (Х<х>) р2 (Х 2) )). В гауссовском случае, когда  [c.233]

Для описания многомерного распределения предлагается распределение части координат (Х(1)) аппроксимировать стандартной нормальной моделью или считать таким, как оно получилось в выборке, а распределение остальных координат (Х<2)) заменить на надлежащим образом подобранный (р—5)-мерный нормальный закон со средним, линейно зависящим от Х(1), и ковариационной матрицей V условного распределения Х(2> при фиксированном значении Х(1), от Х(1) не зависящей. Но это и есть модель линейной многомерной регрессии, в которой Х(1)играет роль предикторной точки-наблю-дений (X), Х(2> — роль многомерного результирующего показателя (У), Е (Х(2) Х(1>) — многомерная регрессия Х(2> на Х(1), а Х(2) — Е(Х(2) Х >) — регрессионные остатки с ковариационной матрицей V.  [c.234]

А з а р я н О. В. Прогноз технико-экономических показателей проектируемых гидросооружений с помощью метода типологической регрессии. — В кн. II Всесоюз. школа-семинар Программно-алгоритмическое обеспечение прикладного многомерного стя-тистического анализа (сент., 1983г.) Тез. докл. М., 1983, с. 125— 137.  [c.459]

Д е е в А. Д., БурлуцкийГ. И. О распределении условной невязки прогноза в модели множественной регрессии и отборе информативных признаков. — В кн. II Всесоюз. науч.-техн. конференция Применение многомерного статистического анализа в экономике и оценке качества продукции Тез. докл. Тарту, 1981, с. 208—213.  [c.461]

Яковлев А. А., Ставицкая Н. А. Алгоритм выбора субоптимальной совокупности предикторов дл т множественной многомерной регрессии.—В кн. Вопросы кибернетики. Нетрадицион-  [c.466]

Прикладная статистика Исследование зависимостей (1985) -- [ c.231 , c.234 , c.250 ]